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Abstract—Nowadays, deep learning is frequently used in the 
field of medical diagnosis. Since the Alzheimer’s disease (AD) is 
one of the most common neurodegenerative diseases in the elderly, 
there is a great clinical benefit in realizing automated diagnosis of 
AD without any prior feature analysis and regardless of the 
variability of image protocols and scanners. This paper involves 
our project that from the very beginning achieves the detection of 
AD using magnetic resonance images (MRI) with deep learning 
algorithms. We performed experiments on two CNN-based models 
for the classification of AD. The best classification model was 
AlexNet, which classified AD patients with healthy controls with 
an accuracy of 70.4%. 
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I. INTRODUCTION 

A variety of techniques are used to detect Alzheimer’s 
disease (AD). One technique uses magnetic resonance images 
(MRI) to detect brain abnormalities and predict which patients 
may develop Alzheimer’s disease. Several studies have shown 
that structural MRI estimates of tissue damage or loss in 
characteristically vulnerable brain regions, such as the 
hippocampus and entorhinal cortex, are predictive of 
progression of mild cognitive impairment (MCI) to AD [1].  

MRI images can be combined with machine learning 
algorithms to try and detect MCI to AD progression. Previous 
work has shown success with deep learning analysis for MCI to 
AD progression [2]. Deep learning differs from other machine 
learning algorithms since it requires little pre-processing and can 
detect abstract and complex patterns, making it useful for 
detecting subtle differences and abnormalities in anatomical 
images.  

In this project we extend work using deep learning to build 
our own convolution neural network that is able to detect MCI 
to AD progression from a set of MRI images for a patient. The 
neural network is trained on data from Open Access Series of 
Imaging Studies (OASIS). We discuss our methods, process, 
results, and conclusions for potential future expansion in this 
project. 

II. APPROACH 

The roadmap is as follows. The raw scans were processed by 
OASIS and FreeSurfer and we will describe some of the 
techniques used as examples of extensions that could be done 
from this project. First the images were anonymized by 
removing dates, names, and IDs. Next the images were motion 
corrected and the white matter and deep gray matter volumetric 
structures in the subcortex region were segmented. This is done 
so that regional volumes can be then corrected for head size in 
order to normalize comparisons. Additional processing included 
smoothing to achieve a common spatial resolution to minimize 
scanner differences. 

From the brain mask files we downloaded, we first visually 
examined them using SPM-12. SPM is an fMRI analysis 
software tool that can be run in MATLAB to analyze brain 
imaging data. SPM tutorials show how processing techniques 
mentioned above can be applied in SPM [3]. After we graped a 
general idea of out image dataset, we load our images to python 
to do further data handling.  

 After s series steps of data preprocessing, our input image 
data were coverted to Numpy arrays and were fed into our CNN-
based models. Our deep learning models were based on the 
conventional CNN model which is shown in Fig. 1. Specifically, 
the inputs were normalized 2D/3D images and outputs were 
numerical numbers representing the possibility that the input 
belonged to each group. The architecture contains: 
convolutional block that comprised of the convolutional layer 
followed by a pooling layer which achieved rotation and 
translation invariance, fully-connected layer, output layer. 

 
Fig. 1. Basic architecture of our convolutional neural network 



  To get ideal results, we tried different kinds of model 
structures and modified the parameters, which will be shown in 
the Results Session.  

    Additionally, Fig. 2. shows how the experiments 
performed and how we validate our model. 

 
Fig. 2. Flowchart of main steps of the experiments performed. 

III. EXPERIMENTS 

A. Database 

Our input data is from the OASIS database [4], which is a 
collection of >1000 participants generated by the Knight ADRC 
and its affiliated studies. OASIS provides open access to a 
significant database of neuroimaging and processed imaging 
data across a broad demographic, cognitive, and genetic 
spectrum for use in neuroimaging, clinical, and cognitive 
research on normal aging and cognitive decline. In this project 
we use OASIS-1 which is specifically for Alzheimer’s disease. 

This data set consists of a cross-sectional collection of 416 
subjects covering the adult life span aged 18 to 96 including 
individuals with early-stage Alzheimer’s Disease (AD). For 
each subject, 3 or 4 individual T1-weighted MRI scans obtained 
within a single imaging session are included. The subjects are 
all right-handed and include both men and women. 100 of the 
included subjects over the age of 60 have been diagnosed with 
very mild to mild AD[4]. We are particularly interested in the 
Mini-Mental State Examination (MMSE) (Rubin et al., 1998) 
and Clinical Dementia Rating (CDR; 0 = nondemented; 0.5 – 
very mild dementia; 1 = mild dementia; 2 = moderate dementia) 
(Morris, 1993). All participants with dementia (CDR >0) were 
diagnosed with probable AD. 

B. Data Selection and Data Preprocessing 

All the raw data that contains 416 subjects are downloaded 
from OASIS-1 for preprocessing. The txt file in each subject 
folder includes acquisition details and anatomic measures 
derived from the scan images. The subjects that do not provide 
clinical diagnosis labels (CDR) are removed from the datasets. 
For each subject, all images are in 16-bit big-endian Analyze 7.5 
format. A Python package NiBabel is used to read this format 
and convert it to a Numpy array for training. 

After removing unusable subjects, only 233 subjects have 
left. Among those samples, there are only two subjects with 
CDR=2 in the database, the sample size of this group is too small 
to be representative thus these two subjects were deleted from 
the dataset. In addition, the imbalance in the size of the dataset 
across classes was quite evident in our problem. In the original 
training set, 88 samples had CDR=0, 45 samples had CDR=0.5 
and 16 samples had CDR=1, the sample size of the class with 
CDR=0 was greater than the sum of the other two classes.  Using 
such a training set greatly increased the difficulty of learning. 
The model tended to exhibit a bias toward the majority group 
while incorrectly ignoring the minority group. To address this 
issue, we simplified our classification task from predicting MCI 
to AD conversion with multiple labels to a binary classification 
problem with only HC (CDR=0) and others who are likely to 
develop AD (CDR>0). Therefore, subjects with CDR=0 are 
labeled as nondemented and those with CDR=0.5 and 1 are 
labeled as probable AD.  

Our initial attempt was to use 3D images as input data. 
However, our current hardware cannot handle such a large 
dataset due to limited computing power and memory space 
(google colab RAM space). In addition, the available training 
data size was only 233, which was far from enough for the model 
to learn the feature space of the images. Therefore, 2D slices 
were extracted from the original 3D images. In details, we 
selected 30 transverse slices from each MRI scan image, and the 
input size was changed from  (176, 208, 176) to (176, 208). Then, 
all 2D images and their corresponding labels were combined 
together and randomly shuffled to form the inputs. 

C. Model Architecture 

In this study, two CNN-based models were used to conduct 
the classification task. First, a basic CNN was constructed. It 
contained three basic convolutional blocks with number of 
filters 128, 64 and 32, kernel sizes of 5×5 and strides of 1,  
followed by a flatten layer and two dense layers (64, 32 nodes) 
with ReLU activation function. The output layer is activated by 
softmax with output nodes 2/3 depending on the classify classes. 

 AlexNet is well known for its great ability in image 
recognition and classification and was also used in our study. 
We proposed a AlexNet-based deep learning model with 5 CNN 
blocks. In AlexNet’s first layer, the convolution window shape 
is 11×11 with a filter of 96 and a stride of 4 to greatly reduce the 
height and width of the output. The second layer is reduced to 
5×5 with a filter of 256 and paddings for consistent height and 
width across the input and output. Both CNN layers are followed 
by a max pooling layer with size of 4 and a stride of 2. Then, 
three successive convolutional layers with a smaller window of 
3×3 and filters of 384, 384 and 256 respectively are used, 
followed by another max pooling layer. The outputs of CNN 
blocks are flattened and connected to two fully-connected layer. 
Dropout layer is used to mitigate overfitting. The shape of output 
layer is 2 or 3 depends on the number of classes. All the layers 
use ReLU as activation function except that the output layer uses 
Sigmoid for classification. 

D. Model train and preformance evaluation 

All our models were trained for 20 epochs with a batch size 
of 32 and an earlystopping callback option to prevent 



overfitting. The performance of each model was evaluated by 
loss function and dataset accuracy. 

IV. RESULTS 

Based on different parameters modified, we got the results 
shown in TABLE I. For both models, the classification 
preformance of two labels outperformed that of three labels, 
which is consistent with our expectation. The best structure is 
AlexNet with binary output, which is of greater practical 
importance because it achieves relatively high test accuracy, 
although its training accuracy is slightly lower than that of the 
CNN model. 

TABLE I.  TRAINING RESULTS 

Model 
Result 

Train Accuracy 
Train 
Loss 

Test 
Accuracy 

CNN—two 
outputs 

77.4% 0.4683 64.1% 

CNN—
three 

outputs 
57.3% 0.8924 45.2% 

AlexNet—
two outputs 

72.2% 0.5407 70.4% 

AlexNet—
three 

outputs 
63.1% 0.7830 57.8% 

 
(a) 

(b) 

(c) 
 

(d) 

Fig. 3. Confusion matrix plotted in seaborn plot style. Plots 
illustrates the classification performance of test data on four 
model structures. The x-axis denotes the predicted classesnd the 
y-axis representing the true classes of the input data. The 
percentage numbers in each colour rectangle represents the ratio 
of data belongs to that area to total data.  (a): CNN for two labels; 
(b): CNN for three labels; (c) AlexNet for two labels; (d) 
AlexNet for three labels. 

V. DISCUSSION 

High accuracy of prediction for AD MRI is of great 
importance. At the beginning, we tried a 3D CNN-based deep 
learning model for 3D input images, and the result is not ideal. 
Later, after we converted the input into 2D images, it started to 
learn normally and the results were much better than those 
whose input was 3D.  

And as we anticipated in the beginning, there were a lot of 
challenges when implementing our deep neural network. The 
problems are as follows: 

 Limited dataset size 



The size of the dataset matters. If it’s too small, it is difficult 
for the model to learn th whole feature space, and the accuracy 
of the neural network will converge quickly and stay unchanged. 
In our project, we converted 3D images into 2D images as input 
data, and the results became better. In detail, for each 3D subject, 
we  extract 30 slices 2D images from the z axis perspective.   

 RAM size limitation 

Because all software is written in Python using Colab Pro, 
the RAM size is still not enough for storage when we using 3D 
mages. We have tried to utilize Generator to solve this challenge. 
Generator is specifically designed to handle large datasets in 
Keras with similar functionality to setting batch size, enabling 
smaller data sizes to be processed at once and allowing for less 
storage space requirements. However, the performance of using 
3D images with generator  still far from satisfactory, so we 
turned to train our models with 2D images with larger sample 
size. 

 Imbalance class 

The dataset was divided into four groups baed on the patients 
CDR ratings. Because the amount of data in the fourth class 
(CDR=2) is too small and not representative, this class is 
discarded. The first class with CDR=0 has the largest amount of 
data, even more than the combined amount of data of the other 
two classes (CDR=0.5 and CDR=1). Therefore, this could lead 
to a huge bias in the model training, producing a classification 
result completely biased towards the group with CDR=0. This 
assumption was verified when we utilized 3D images to perform 
the binary classification. The output accuracy of our model was 
always 0.5946, which corresponded exactly to the ratio between 
group 0 (healthy controls with CDR=0) and group 1 (CDR=0.5 
or 1). After we expanded our dataset by extracting 2D slices 

from each 3D MRI image, we randomly selected the same 
number of samples from each classes to form the final inputs,  
thus eliminating the imbalance. 

 Inherent error of label 

The label we obtain from the OASIS is Clinical Dementia 
Rating (CDR), which represents probable AD if greater than 0. 
It is an important assessment in the early and accurate diagnosis 
of dementia. Patients’ cognitive and functional performance is 
quantified through a structured-interview protocol. However, 
the assessment is ultimately subjective in nature. In our dataset, 
the numbers of moderate and severe symptoms are extremely 
small, which make the overall samples not representative. 
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